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Semi-formal Validation of CPS - Testing with
Quantitative Guarantees

v

Falsification: Find input signal so that output violates requirement.

v

Coverage: measure to evaluate testing quality. When no bug is

found, this allows quantifying the " correctness degree” of the system.

y = f(u)

u:Rzg—)Rk y:RZU—)RI

Eg: Engine Speed [ Eg: A/F ratio

REQUIREMENT:
Ez v < 0.04

‘INP[TT FALSIFIER R OUTPUT FAZLSIFIER
0.05

time
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Validation of CPS

» CPS models: Specification of Input-Output function f can be
highly complex. Eg. [Differential Equations + Automata +
Look-up tables + Delays + Control Programs].

» Black-box systems: Testing with knowing a model f of the
system under test, i.e. only by sampling input signals.

Falsifier
el




Robustness - Quantitative Guarantee

» Quantitative semantics: A function p measures extent of
satisfifaction of a formal specification ¢ by output y.

y = ps(y)

» Robustness of STL formulas. Eg, given ¢ : O(y < 0.04),
poly) = maxi>00.4 — y(t)
» (Robustness < 0) = Falsified.
0.3 po(y) = —0.1 (falsified)
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Coverage - Star Discrepancy

Star Discrepancy

» Let P be a set of k points inside B = [k, L1] X ... X [In, Ln].

_ ‘#(P, J)  vol(J)

» Local discrepancy: D(P,J) k vol(B)

|. Example:
2 1
D(P,J) =15 — 4l

» Discrepancy: supremum of local discrepancy values of all sub-boxes
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Coverage - Star Discrepancy
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Faure sequence of 100 points. lts star discrepancy value is 0.048.
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Coverage - Star Discrepancy
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Halton sequence of 100 points. The star discrepancy value is 0.05.
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Coverage - Star Discrepancy
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Sequence of 100 points generated by a pseudo-random function in the
C library. Its star discrepancy value is 0.1.
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From Points to Signals

» Actual input signal space is INFINITE DIMENSIONAL, but we
may search on a Finite Dimensional Space.

» For example, a uniform step signal in a bounded time horizon
can be represented by a finite set of parameters.

u—ucR”

u=1(0205,04,040.6.,07,06,02)

-
tune

» Extension to signals satisfying some temporal properties (STL)
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Falsification as Optimization

© Define new robustness function on parametrized input space.

ﬁ‘ e RIH

@ Falsification:

p (@) = p (F (@)

p(u) e R

min  py (u) <0

ue(ScRrm)
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Testing as Optimization

@ Define new robustness function on the parametrized input space.

PR p@=pi @) PUEE

@ Falsification: . ~
min u) <0
ue(ScRrRm) Po ( )

© Good coverage over input signal space or state space
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Testing as Optimization

Randomized exploration, inspired by probabilistic motion
planning techniques RRT (Random Rapidly-Exploring Trees) in
robotics. Guided by coverage criteria

Classification + black-box search
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Sensitivity to Initial search Conditions

» Common black-box search approaches Bias Sampling towards local
optimum, generally called stochastic local search techniques. Eg.
Simulated Annealing, CMA-ES, Nelder-Mead, etc.

» Local Search Effectiveness is Sensitive to Initial conditions.

. . . Good initialization point
Search trajectories

. Bad Initialization point

OO

SSIMIST Oy

o
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Problem: Find good Initialization Conditions

© Global search: Find well separated regions of search space that
are likely to contain a falsifier.

Good Inifialization regions

@ Initialize local search with promising initialization conditions
based on above analysis.
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Overview of global search

» STATISTICAL CLASSIFICATION + BIASED SAMPLING.
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Overview of global search

» STATISTICAL CLASSIFICATION + BIASED SAMPLING.

.| ,CLASSIFIER

« below average robustness

. above average robustness

add less poi_nts"'. /add more points
s ’
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» STATISTICAL CLASSIFICATION + BIASED SAMPLING.

Overview of global search

. « ,CLASSIFIER

« below average robustness

. . above average robustness

/

¥ .
Good Initialization regions
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Classification

@ Use Axis Aligned Hyperplane for best possible separation of points
BELOW and ABOVE Average Robustness .

[ o . | +CLASSIFIER

. below average robustness

. . above average robustness

@ Ciriteria for separation: Minimize misclassification error, like Soft
Margin Support Vector machines (SVM).

error(d,r) = min Z p(p(x) — ) (xqg —r)

d € {1,...,m}: axis along which classifier is aligned, r € [a4, bg]: position

of classifier, S: set of points, u: average robustness.
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Biased Sampling

BIASED SAMPLING

— ~a

Coverage and Robustness Singularity based sampling
based sampling
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Biased Sampling

BIASED SAMPLING

— ~a

Coverage and Robustness Singularity based sampling
based sampling

v

w(Coverage based Probability) +
(1 — w) (Robustness based Probability)

¥

PN miN

PsN

N
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Biased Sampling

BIASED SAMPLING

— —a

Coverage and Robustness Singularity based sampling
based sampling

1
Sampling in regions containing
very low robust points
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Biased Sampling

BIASED SAMPLING

— —a

Coverage and Robustness Singularity based sampling
based sampling
'Y
v Sampling in regions containing

very low robust points

w(Coverage based Probability) +
(1 — w) (Robustness based Probability)

PN miN l
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Coverage based Probability distribution

> Let h; denote coverage in rectangle R;.

» Coverage based probability:

Py
Py | Py
PC
c_ (1 — h,') 4
i T oK
Zi:l (1 - hl) Pé:
Py
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Robustness based Probability distribution

» Given set of samples S; in rectangle R;, the expected reduction

below average robustness:

» Expected reduced robustness below average: 0, = ji; — \;

» So, we heuristically determine a robustness based probability
distribution as

P,

2.

XS;;‘,_.

=

el

Z max(p; —

x€S;

p(x),0)

Py

P
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Weighted Probabilistic Sampling

» User defined Weight w € [0, 1].

» Weighted coverage and robustness based probability and
distribute N samples accordingly.

N P;
NP
P; = wPf + (1 — w)P/ N Py NP,
N Py
N P;
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Singular samples

Very low robustness samples: Singular samples.
» Given : Vector of lowest robust values in different rectangles.

» /1y: Average of elements of 7. \,: Average deviation below /.

Definition

A point x € [J; S; for which p(x) < max (i, — 3)\,, \,) is called a
singular sample.

Reason: For a normal distribution, less than 15% samples are
singular.
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Singularity based sampling

Given N: User defined threshold no. samples for Classification,

» If R; has a singular sample and contains total X; samples, then add
max (0, N — X;) samples.

add max (0, N — X2) samples

X3

X4

add max (0, N — X5) samples

-
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One lteration of Global Search

Given N: User define threshold no. samples for classification.

no.samples > N
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One lteration of Global Search

Given N: User define threshold no. samples for classification.

no.samples > N New Hyperplanes
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Classify
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One lteration of Global Search

Given N: User define threshold no. samples for classification.

no.samples > N New Hyperplanes

RS

Classify

Probababilistic| Add N P, points
Sampling in R;

Npy | ney | VB
NP
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One lteration of Global Search

Given N: User define threshold no. samples for classification.

no.samples > N

New Hyperplanes

RS

Classify
Singularity based Probababilistic| Add N P, points
I Sampling in R;
NPy| NPy NA
| NP6
Vo N Pk
add max (0, N — X;) samples
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[[lustration of Final Subdivision

Regions containing Low Robust Samples
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CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

» Procedure: Update Mean and Covariance Matrix of Normally
Distributed Samples in each iteration, based on Less Robust Samples.

. N . Less Robust samples
. /,, . O
,/ .." . .
/"« « o/ |,t= Mean, Covariance Matrix
. S
[ L] o”l L]
<
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Combine Global and CMA-ES Local search

» Use Global Search to Find good Initial Mean and Covariance Matrix
for CMAES search.
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Combine Global and CMA-ES Local search

» Use Global Search to Find good Initial Mean and Covariance Matrix
for CMAES search.

@ Initialize Mean with each of the Lowest
Robust Points in promissing regions.

@ |Initialize Mean and Covariance Matrix
as that of the Mean and Covariance of
Lowest Robust Points in promissing
regions.
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Example: Automatic Powertrain Control System

7 Continuous States, Delay Signal
4 modes

Pedal Angle A
€ [0, 40]

=1| A/F Ratio

» Requirement: [s 10 (7 < 0.5).
» Parametrization. Pedal Angle Signal: 10 control points.
» Dimension of Search Space: 10.
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Experimental results: PTC benchmark

Solver Seed | Computation time (secs) | Falsification

0 2891 \/
Hyperplane classification 5000 2364 \/
+ CMA-ES-Breach 10000 2101 v
15000 2071 v

0 T.0 (5000)

5000 T.0. (5000)

CMA-ES-Breach 10000 T.0. (5000)

15000 T.0. (5000)

0 T.0. (5000)

Grid based random 5000 T.0. (5000)
sampling 10000 3766 v
15000 268 v
Global Nelder-Mead-Breach T.0. (5000) v’
S-TaLiRo (Simulated Annealing) 4481 Ve
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Example: Automatic Transmission

69 blocks 4 2 integrators
5 look-up tables, 4 X 3 discrete states

Throttle .

€ [35 100 | Engine Speed (w)
Break Vehicle Speed (v)
€ [0 40]

> Requirement. ¢ = = ((Op10v > 50) A (Ow < 2520))

» Parametrization. Throttle: 7 Control Points, Break: 3 Control
Points.

» Dimension of Search Space. 7+3=10.
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Experimental Results: Automatic Transmission

Solver Seed | Computation time (secs) | Falsification
0 996 v
Hyperplane classification 5000 1382 ‘/
+ CMA-ES-Breach 10000 1720 v
15000 1355 v
0 T.0 (2000)
5000 1302 v
CMA-ES-Breach 10000 T.0O. (2000)
15000 1325 v
0 T.0O. (2000)
. 5000 T.0. (2000)
SGarr']:’ :’iised random 10000 T.0. (2000)
pling 15000 T.0. (2000)
Global Nelder-Mead-Breach T.0. (2000)
S-TaLiRo (Simulated Annealing) T.0. (2000)
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Experiment: Industrial Example

Current-Air flow dynamics of an Automative Fuel Control system.

Solver Seed | Computation time (sec.) | Falsification
Hyperplane classification 1 406 v
+ CMA-ES-Breach 2 1383 v
(Cell partition: A)t 3 T.0.

4 794 v

Hyperplane classification 1 409 v
+ CMA-ES-Breach 2 T.0O.
(Cell partition: B)T 3 T.0O.
4 T.O.

1 314 v
CMA-ES Breachf 2 1418
3 T.0O.

4 1316 v

Uniform random' 1 396 v

sampling 2 786 v

3 2241 v
4 T.0O.

S-TaLiRo (Simulated Annealing)?* 1 310 v
sampling 2 o

3 671 v
4 T.0O.

Global Nelder-Mead-Breach' 1501 v
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Concluding remarks

@ Other applications under investigation: biological systems
modelling

@ More coverage measures (entropy,...)
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Thank You!



