Semi-formal Validation of Cyber-Physical Systems

Thao Dang²

Collaborators: Arvind Adimoolam ¹, Alexandre Donzé ³, James Kapinski ⁴, Xiaoqing Jin ⁵

^{1,2}VERIMAG/ ²CNRS Grenoble, France

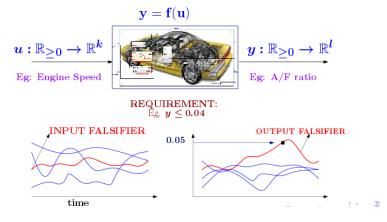
³Decyphir, Inc, France

Toyota Motors North America R&D, USA.

イロン イロン イヨン イヨン 三日

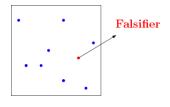
Semi-formal Validation of CPS - Testing with Quantitative Guarantees

- **Falsification**: Find input signal so that output violates requirement.
- Coverage: measure to evaluate testing quality. When no bug is found, this allows quantifying the "correctness degree" of the system.



Validation of CPS

- CPS models: Specification of Input-Output function f can be highly complex. Eg. [Differential Equations + Automata + Look-up tables + Delays + Control Programs].
- Black-box systems: Testing with knowing a model f of the system under test, i.e. only by sampling input signals.

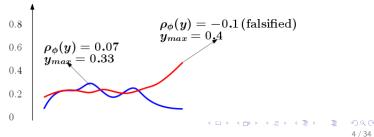


Robustness - Quantitative Guarantee

Quantitative semantics: A function ρ measures extent of satisfifaction of a formal specification φ by output y.
 y → ρ_φ(y)

► Robustness of STL formulas. Eg, given ϕ : $\Box(y \le 0.04)$, $\rho_{\phi}(y) = max_{t \ge 0}0.4 - y(t)$

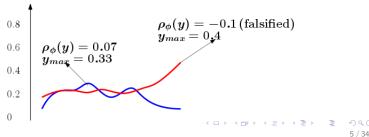
• (Robustness < 0) \Rightarrow Falsified.



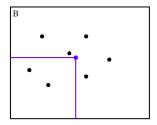
Robustness

- Quantitative semantics: A function ρ measures extent of satisfifaction of a formal specification φ by output y.
 y → ρ_φ(y)
- ► Robustness of STL formulas. Eg, given ϕ : $\Box(y \le 0.04)$, $\rho_{\phi}(y) = max_{t \ge 0} 0.04 - y(t)$

• (Robustness < 0) \Rightarrow Falsified.



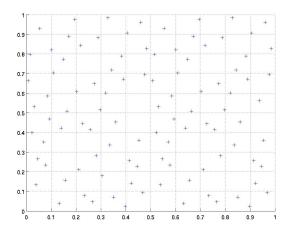
Star Discrepancy



- Let P be a set of k points inside $B = [I_1, L_1] \times \ldots \times [I_n, L_n]$.
- ► Local discrepancy: $D(P, J) = \left|\frac{\#(P, J)}{k} \frac{vol(J)}{vol(B)}\right|$. Example: $D(P, J) = \left|\frac{2}{7} - \frac{1}{4}\right|$

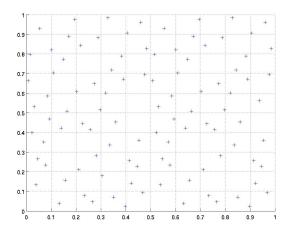
Discrepancy: supremum of local discrepancy values of all sub-boxes

イロト 不得下 イヨト イヨト 二日



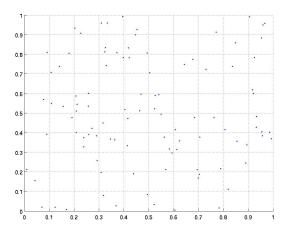
Faure sequence of 100 points. Its star discrepancy value is 0.048.

- 4 回 > - 4 回 > - 4 回 >



Halton sequence of 100 points. The star discrepancy value is 0.05.

< 🗇 🕨

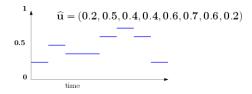


Sequence of 100 points generated by a **pseudo-random function in the C library**. Its star discrepancy value is 0.1.

From Points to Signals

- Actual input signal space is INFINITE DIMENSIONAL, but we may search on a Finite Dimensional Space.
- ► For example, a uniform step signal in a bounded time horizon can be represented by a finite set of parameters.

$$u \to \widehat{u} \in \mathbb{R}^m$$



Extension to signals satisfying some temporal properties (STL)

Falsification as Optimization

1 Define new robustness function on parametrized input space.

 $\widehat{u} \in \mathbb{R}^{m} \quad \widehat{\rho}(\widehat{u}) = \rho(f(\widehat{u})) \quad \widehat{\rho}(\widehat{u}) \in \mathbb{R}$ Falsification: $\min_{\widehat{u} \in (S \subset \mathbb{R}^{m})} \widehat{\rho}_{\phi}(\widehat{u}) < 0$

イロト 不得下 イヨト イヨト 二日

Testing as Optimization

1 Define new robustness function on the parametrized input space.

 $\begin{array}{c} \widehat{u} \in \mathbb{R}^{m} \\ \widehat{\rho}\left(\widehat{u}\right) = \rho\left(f\left(\widehat{u}\right)\right) \\ \widehat{\rho}\left(\widehat{u}\right) \in \mathbb{R} \\ \end{array}$ $\begin{array}{c} \widehat{\rho}\left(\widehat{u}\right) = \rho\left(f\left(\widehat{u}\right)\right) \\ \widehat{\rho}\left(\widehat{u}\right) < 0 \\ \end{array}$ $\begin{array}{c} \widehat{\rho}_{\phi}\left(\widehat{u}\right) < 0 \\ \end{array}$

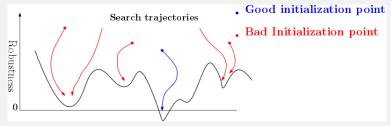
Good coverage over input signal space or state space

Testing as Optimization

- Randomized exploration, inspired by probabilistic motion planning techniques RRT (Random Rapidly-Exploring Trees) in robotics. Guided by coverage criteria
- Classification + black-box search

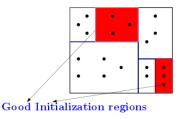
Sensitivity to Initial search Conditions

- Common black-box search approaches Bias Sampling towards local optimum, generally called *stochastic local search techniques*. Eg. Simulated Annealing, CMA-ES, Nelder-Mead, etc.
- Local Search Effectiveness is Sensitive to Initial conditions.



Problem: Find good Initialization Conditions

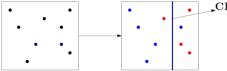
Global search: Find well separated regions of search space that are likely to contain a falsifier.



Initialize local search with promising initialization conditions based on above analysis.

► STATISTICAL CLASSIFICATION + BIASED SAMPLING.

► STATISTICAL CLASSIFICATION + BIASED SAMPLING.

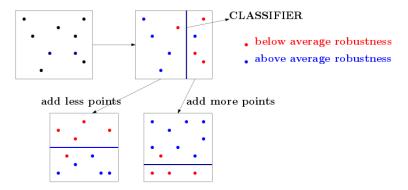


_CLASSIFIER

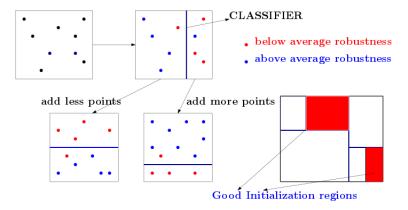
- below average robustness
- above average robustness

- 4 回 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 三 2 - 4 二 2 - 4 □

► STATISTICAL CLASSIFICATION + BIASED SAMPLING.

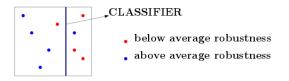


► STATISTICAL CLASSIFICATION + BIASED SAMPLING.



Classification

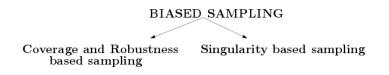
 Use Axis Aligned Hyperplane for best possible separation of points BELOW and ABOVE Average Robustness μ.

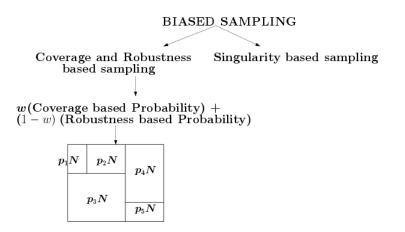


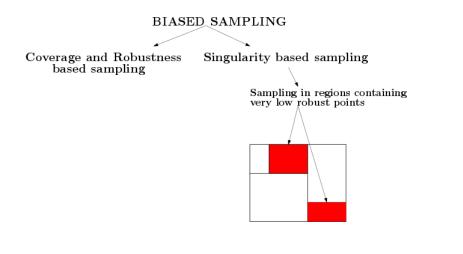
Criteria for separation: Minimize misclassification error, like Soft Margin Support Vector machines (SVM).

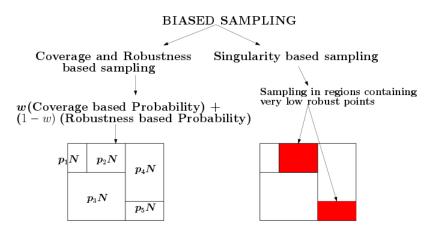
$$error(d, r) = \min_{p \in \{0,1\}} \sum_{x \in S} p(\rho(x) - \mu)(x_d - r)$$

 $d \in \{1, ..., m\}$: axis along which classifier is aligned, $r \in [a_d, b_d]$: position of classifier, S: set of points, μ : average robustness, $a_{d} \in \{1, ..., m\}$ is a solution of classifier of μ : average robustness, $a_{d} \in \{1, ..., m\}$ is a solution of classifier of μ : average robustness, $a_{d} \in \{1, ..., m\}$ is a solution of classifier of μ : average robustness of μ .





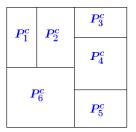




Coverage based Probability distribution

- ► Let *h_i* denote coverage in rectangle *R_i*.
- Coverage based probability:

$$P_i^c = rac{(1-h_i)}{\sum_{i=1}^{K} (1-h_i)}$$



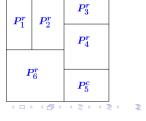
Robustness based Probability distribution

Given set of samples S_i in rectangle R_i, the expected reduction below average robustness:

$$\lambda_i = \frac{1}{|S_i|} \sum_{x \in S_i} \max(\mu_i - \rho(x), 0)$$

- Expected reduced robustness below average: $\theta_i = \mu_i \lambda_i$
- So, we heuristically determine a robustness based probability distribution as

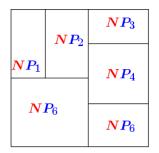
$$P_r^i = \frac{\frac{1}{\theta_i}}{\sum_{j=1}^{K} \frac{1}{\theta_j}}$$



Weighted Probabilistic Sampling

- User defined Weight $w \in [0, 1]$.
- Weighted coverage and robustness based probability and distribute N samples accordingly.

 $P_i = wP_i^c + (1-w)P_i^r$



Singular samples

Very low robustness samples: Singular samples.

- Given γ : Vector of lowest robust values in different rectangles.
- μ_{γ} : Average of elements of γ . λ_{γ} : Average deviation below μ_{γ} .

Definition

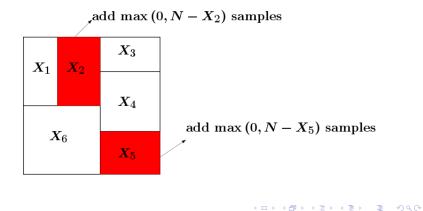
A point $x \in \bigcup_{i=1}^{k} S_i$ for which $\rho(x) \leq \max(\mu_{\gamma} - 3\lambda_{\gamma}, \lambda_{\gamma})$ is called a singular sample.

Reason: For a normal distribution, less than 15% samples are singular.

Singularity based sampling

Given N: User defined threshold no. samples for Classification,

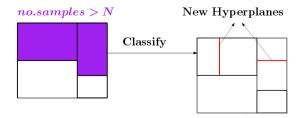
If R_i has a singular sample and contains total X_i samples, then add max (0, N − X_i) samples.



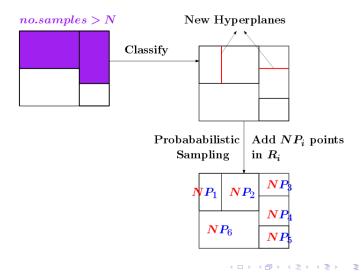
Given N: User define threshold no. samples for classification.

no.samples > N

Given N: User define threshold no. samples for classification.



Given N: User define threshold no. samples for classification.



Given N: User define threshold no. samples for classification.

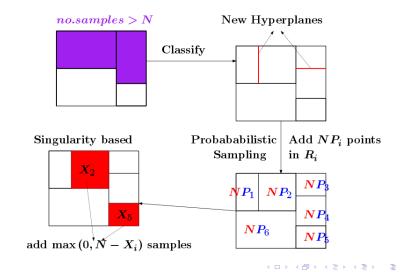
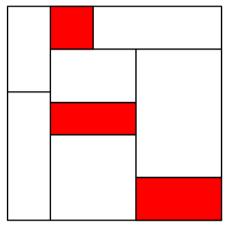


Illustration of Final Subdivision

Regions containing Low Robust Samples

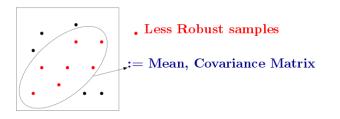


・ロ ・ < 回 ・ < 言 ト < 言 ト こ の へ ()
25 / 34

CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

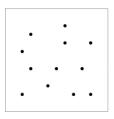
 Procedure: Update Mean and Covariance Matrix of Normally Distributed Samples in each iteration, based on Less Robust Samples.



CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

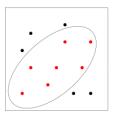
 Procedure: Update Mean and Covariance Matrix of Normally Distributed Samples in each iteration, based on Less Robust Samples.



CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

 Procedure: Update Mean and Covariance Matrix of Normally Distributed Samples in each iteration, based on Less Robust Samples.

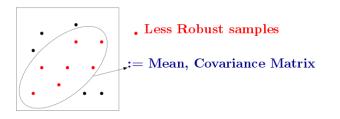


. Less Robust samples

CMA-ES local search

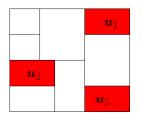
CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

 Procedure: Update Mean and Covariance Matrix of Normally Distributed Samples in each iteration, based on Less Robust Samples.



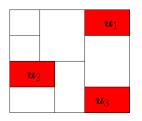
Combine Global and CMA-ES Local search

 Use Global Search to Find good Initial Mean and Covariance Matrix for CMAES search.



Combine Global and CMA-ES Local search

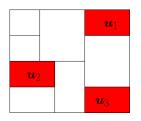
 Use Global Search to Find good Initial Mean and Covariance Matrix for CMAES search.



Initialize Mean with each of the Lowest Robust Points in promissing regions.

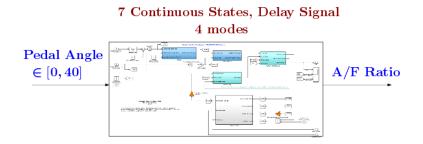
Combine Global and CMA-ES Local search

 Use Global Search to Find good Initial Mean and Covariance Matrix for CMAES search.



- Initialize Mean with each of the Lowest Robust Points in promissing regions.
- Initialize Mean and Covariance Matrix as that of the Mean and Covariance of Lowest Robust Points in promissing regions.

Example: Automatic Powertrain Control System



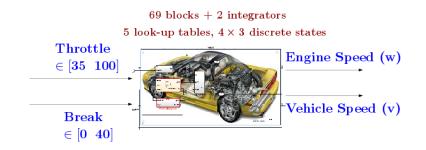
- Requirement: $\Box_{[5,10]}$ ($\eta < 0.5$).
- Parametrization. Pedal Angle Signal: 10 control points.
- **•** Dimension of Search Space: 10.

Experimental results: PTC benchmark

Solver	Seed	Computation time (secs)	Falsification
Hyperplane classification + CMA-ES-Breach	0	2891	\checkmark
	5000	2364	\checkmark
	10000	2101	\checkmark
	15000	2271	\checkmark
CMA-ES-Breach	0	T.O (5000)	
	5000	T.O. (5000)	
	10000	T.O. (5000)	
	15000	T.O. (5000)	
Grid based random sampling	0	T.O. (5000)	
	5000	T.O. (5000)	
	10000	3766	\checkmark
	15000	268	\checkmark
Global Nelder-Mead-Breach		T.O. (5000)	\checkmark
S-TaLiRo (Simulated Annealing)		4481	\checkmark

29/34

Example: Automatic Transmission



- ▶ Requirement. $\phi = \neg \left((\Diamond_{[0,10]} \nu > 50) \land (\Box w \le 2520) \right)$
- Parametrization. Throttle: 7 Control Points, Break: 3 Control Points.
- ▶ Dimension of Search Space. 7+3=10.

Experimental Results: Automatic Transmission

Solver	Seed	Computation time (secs)	Falsification
Hyperplane classification + CMA-ES-Breach	0	996	\checkmark
	5000	1382	\checkmark
	10000	1720	\checkmark
	15000	1355	\checkmark
CMA-ES-Breach	0	T.O (2000)	
	5000	1302	\checkmark
	10000	T.O. (2000)	
	15000	1325	\checkmark
Grid based random sampling	0	T.O. (2000)	
	5000	T.O. (2000)	
	10000	T.O. (2000)	
	15000	T.O. (2000)	
Global Nelder-Mead-Breach		T.O. (2000)	
S-TaLiRo (Simulated Annealing)		T.O. (2000)	

Experiment: Industrial Example

Current-Air flow dynamics of an Automative Fuel Control system.

Solver	Seed	Computation time (sec.)	Falsification
Hyperplane classification	1	406	✓
+ CMA-ES-Breach	2	1383	\checkmark
(Cell partition: A) ^{\dagger}	3	Т.О.	
	4	794	\checkmark
Hyperplane classification	1	409	✓
+ CMA-ES-Breach	2	Т.О.	
(Cell partition: B) ^{\dagger}	3	Т.О.	
	4	Т.О.	
CMA-ES Breach [†]	1	314	\checkmark
	2	1418	
	3	Т.О.	
	4	1316	 ✓
Uniform random [†] sampling	1	396	 ✓
	2	786	✓
	3	2241	✓
	4	Т.О.	
S-TaLiRo (Simulated Annealing) [‡] sampling	1	310	 ✓
	2	Т.О.	
	3	671	\checkmark
	4	Т.О.	
Global Nelder-Mead-Breach [†]		1501	✓
		《曰》《圖》《言》	▲注▶ 臣 の

32 / 34

Concluding remarks

- Other applications under investigation: biological systems modelling
- More coverage measures (entropy,...)

Thank You!

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > 34 / 34