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Semi-formal Validation of CPS - Testing with

Quantitative Guarantees

I Falsification: Find input signal so that output violates requirement.
I Coverage: measure to evaluate testing quality. When no bug is

found, this allows quantifying the ”correctness degree” of the system.
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Validation of CPS

I CPS models: Specification of Input-Output function f can be
highly complex. Eg. [Differential Equations + Automata +
Look-up tables + Delays + Control Programs].

I Black-box systems: Testing with knowing a model f of the
system under test, i.e. only by sampling input signals.
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Robustness - Quantitative Guarantee

I Quantitative semantics: A function ρ measures extent of
satisfifaction of a formal specification φ by output y .

y → ρφ(y)

I Robustness of STL formulas. Eg, given φ : �(y ≤ 0.04),

ρφ(y) = maxt≥00.4− y(t)

I (Robustness < 0) ⇒ Falsified.
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Coverage - Star Discrepancy

Star Discrepancy

I Let P be a set of k points inside B = [l1, L1]× . . .× [ln, Ln].

I Local discrepancy: D(P, J) = |#(P, J)

k
− vol(J)

vol(B)
|. Example:

D(P, J) = |2
7
− 1

4
|

I Discrepancy: supremum of local discrepancy values of all sub-boxes
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Coverage - Star Discrepancy

Faure sequence of 100 points. Its star discrepancy value is 0.048.
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Coverage - Star Discrepancy

Halton sequence of 100 points. The star discrepancy value is 0.05.
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Coverage - Star Discrepancy

Sequence of 100 points generated by a pseudo-random function in the

C library. Its star discrepancy value is 0.1.
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From Points to Signals

I Actual input signal space is INFINITE DIMENSIONAL, but we
may search on a Finite Dimensional Space.

I For example, a uniform step signal in a bounded time horizon
can be represented by a finite set of parameters.

u → û ∈ Rm

I Extension to signals satisfying some temporal properties (STL)
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Falsification as Optimization

1 Define new robustness function on parametrized input space.

2 Falsification: min
û∈(S⊂Rm)

ρ̂φ (û) < 0
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Testing as Optimization

1 Define new robustness function on the parametrized input space.

2 Falsification: min
û∈(S⊂Rm)

ρ̂φ (û) < 0

3 Good coverage over input signal space or state space
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Testing as Optimization

I Randomized exploration, inspired by probabilistic motion
planning techniques RRT (Random Rapidly-Exploring Trees) in
robotics. Guided by coverage criteria

I Classification + black-box search
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Sensitivity to Initial search Conditions

I Common black-box search approaches Bias Sampling towards local
optimum, generally called stochastic local search techniques. Eg.
Simulated Annealing, CMA-ES, Nelder-Mead, etc.

I Local Search Effectiveness is Sensitive to Initial conditions.
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Problem: Find good Initialization Conditions

1 Global search: Find well separated regions of search space that
are likely to contain a falsifier.

2 Initialize local search with promising initialization conditions
based on above analysis.
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Overview of global search

I STATISTICAL CLASSIFICATION + BIASED SAMPLING.
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Classification

1 Use Axis Aligned Hyperplane for best possible separation of points
BELOW and ABOVE Average Robustness µ.

2 Criteria for separation: Minimize misclassification error, like Soft
Margin Support Vector machines (SVM).

error(d , r) = min
p∈{0,1}

∑
x∈S

p (ρ(x)− µ) (xd − r)

d ∈ {1, ...,m}: axis along which classifier is aligned, r ∈ [ad , bd ]: position

of classifier, S : set of points, µ: average robustness.
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Biased Sampling
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Biased Sampling
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Coverage based Probability distribution

I Let hi denote coverage in rectangle Ri .

I Coverage based probability:

Pc
i =

(1− hi )∑K
i=1 (1− hi )
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Robustness based Probability distribution

I Given set of samples Si in rectangle Ri , the expected reduction
below average robustness:

λi =
1

|Si |
∑
x∈Si

max(µi − ρ(x), 0)

I Expected reduced robustness below average: θi = µi − λi
I So, we heuristically determine a robustness based probability

distribution as

P i
r =

1
θi∑K
j=1

1
θj
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Weighted Probabilistic Sampling

I User defined Weight w ∈ [0, 1].

I Weighted coverage and robustness based probability and
distribute N samples accordingly.

Pi = wPc
i + (1− w)P r

i
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Singular samples

Very low robustness samples: Singular samples.

I Given γ: Vector of lowest robust values in different rectangles.

I µγ: Average of elements of γ. λγ: Average deviation below µγ.

Definition

A point x ∈
⋃k

i=1 Si for which ρ(x) ≤ max (µγ − 3λγ, λγ) is called a
singular sample.

Reason: For a normal distribution, less than 15% samples are
singular.
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Singularity based sampling

Given N: User defined threshold no. samples for Classification,

I If Ri has a singular sample and contains total Xi samples, then add
max (0,N − Xi ) samples.
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One Iteration of Global Search

Given N: User define threshold no. samples for classification.
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Illustration of Final Subdivision
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CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

I Procedure: Update Mean and Covariance Matrix of Normally
Distributed Samples in each iteration, based on Less Robust Samples.

26 / 34



CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

I Procedure: Update Mean and Covariance Matrix of Normally
Distributed Samples in each iteration, based on Less Robust Samples.

26 / 34



CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

I Procedure: Update Mean and Covariance Matrix of Normally
Distributed Samples in each iteration, based on Less Robust Samples.

26 / 34



CMA-ES local search

CMA-ES: Covariance Matrix Adaptive Evolutionary Search.

I Procedure: Update Mean and Covariance Matrix of Normally
Distributed Samples in each iteration, based on Less Robust Samples.

26 / 34



Combine Global and CMA-ES Local search

I Use Global Search to Find good Initial Mean and Covariance Matrix
for CMAES search.

1 Initialize Mean with each of the Lowest
Robust Points in promissing regions.

2 Initialize Mean and Covariance Matrix
as that of the Mean and Covariance of
Lowest Robust Points in promissing
regions.
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Example: Automatic Powertrain Control System

I Requirement: �[5,10] (η < 0.5).

I Parametrization. Pedal Angle Signal: 10 control points.

I Dimension of Search Space: 10.
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Experimental results: PTC benchmark

Solver Seed Computation time (secs) Falsification

Hyperplane classification
+ CMA-ES-Breach

0 2891 X
5000 2364 X

10000 2101 X
15000 2271 X

CMA-ES-Breach

0 T.O (5000)
5000 T.O. (5000)

10000 T.O. (5000)
15000 T.O. (5000)

Grid based random
sampling

0 T.O. (5000)
5000 T.O. (5000)

10000 3766 X
15000 268 X

Global Nelder-Mead-Breach T.O. (5000) X

S-TaLiRo (Simulated Annealing) 4481 X
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Example: Automatic Transmission

I Requirement. φ = ¬
(
(♦[0,10]v > 50) ∧ (�w ≤ 2520)

)
I Parametrization. Throttle: 7 Control Points, Break: 3 Control

Points.

I Dimension of Search Space. 7+3=10.
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Experimental Results: Automatic Transmission

Solver Seed Computation time (secs) Falsification

Hyperplane classification
+ CMA-ES-Breach

0 996 X
5000 1382 X

10000 1720 X
15000 1355 X

CMA-ES-Breach

0 T.O (2000)

5000 1302 X
10000 T.O. (2000)

15000 1325 X

Grid based random
sampling

0 T.O. (2000)
5000 T.O. (2000)

10000 T.O. (2000)
15000 T.O. (2000)

Global Nelder-Mead-Breach T.O. (2000)

S-TaLiRo (Simulated Annealing) T.O. (2000)
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Experiment: Industrial Example

Current-Air flow dynamics of an Automative Fuel Control system.

Solver Seed Computation time (sec.) Falsification
Hyperplane classification
+ CMA-ES-Breach
(Cell partition: A)†

1 406 X
2 1383 X
3 T.O.
4 794 X

Hyperplane classification
+ CMA-ES-Breach
(Cell partition: B)†

1 409 X
2 T.O.
3 T.O.
4 T.O.

CMA-ES Breach†
1 314 X
2 1418
3 T.O.
4 1316 X

Uniform random†

sampling

1 396 X
2 786 X
3 2241 X
4 T.O.

S-TaLiRo (Simulated Annealing)‡

sampling

1 310 X
2 T.O.
3 671 X
4 T.O.

Global Nelder-Mead-Breach† 1501 X
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Concluding remarks

1 Other applications under investigation: biological systems
modelling

2 More coverage measures (entropy,...)
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Thank You!
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