Real-Virtual fusion Manufacturing Systems

Nobutada Fujii Graduate School of System Informatics Kobe University E-mail: nfujii@phoenix.kobe-u.ac.jp

Introduction: research fields

- Manufacturing & Service Systems Design
 - Environment adaptive manufacturing systems
 - Autonomous and decentralized system
 - Emergent synthetic methodologies
 - Synthetic approach for social system
 - Service science / engineering
 - Open innovation (hackathon, ideathon)
 - Urban system design based on IoT

Real-Virtual Fusion Manufacturing System (RVF-MS)

- □ RVF-MS aims to
 - adaptively and effectively deal with both external and internal fluctuations
 - couple the real production shop floor (real system) and the digital manufacturing model (virtual system)

Multi-agent system based configuration is adopted to realize *dynamic construction of virtual systems* so as to balance between system optimality and adaptability.

Production Scheduling in RVF-MS

Planning Phase

- Virtual system is constructed by the communication of all the agents
- to achieve global production optimization
- Operational Phase
 - Virtual system is constructed only by the communication of partial agents which are necessary for rescheduling
 - Rescheduling using partial components can
 - Not destroy the initial schedule frequently
 - □ be executed faster to give a quick response for fluctuations

A <u>social contract based approach</u>, named <u>Combinatorial Auction</u> is applied

(planning phase)

Virtual System

Dynamical Virtual System

(planning phase)

(<u>planning phase</u>)

(planning phase)

(<u>operational phase</u>)

(<u>operational phase</u>)

(<u>operational phase</u>)

Implementation of RVF-MS

Combinatorial Auction (CA)

- CA is a type of social contract based approach, in which participants can place bids on combinations of discrete items, rather than just individual items or continuous quantities.
- Relationship such as complementarity and replacements among items can be represented in CA, so that efficient allocation of items can be realized.
- **BDP**: determine efficient placement of bids and submit to the auctioneer
 - □ All-bids: bids by all of the jobs' combination (*Although Optimum solutions can be obtained, combination explosively increases along with the large scale*)
 - □ Part-bids: bids by only a part of the jobs' combination (it is effectiveness by using *utility restriction and local search to give an efficient search space*)
- **WDP**: determine efficient allocation of items to bidders, to maximize the auctioneer's utility.

System configuration of RVF-MS

There are motors, sensors, actuators, and control systems in each part of model plant.

Experimental result

Toward Service Systems Design

- Building service system design methodologies
 - Re-design from viewpoints of "service"
 - □ Service Dominant Logic (Vargo & Lusch, 2004)
 - Integration of production/provision/consuming stages
 - Sustainable system design by maximizing Customer Satisfaction (CS), Employee Satisfaction (ES) and Management Satisfaction (MS)
 - Value co-creation by Service producer, provider and consumer