

Development and Integration of Artificial Intelligence Technologies for Innovation Acceleration

Innovation in management of breeding cows

Takenao Ohkawa Graduate School of System Informatics Kobe University

Background

High demand on **smart agriculture** to improve productivity based on scientific knowledge and data

In livestock field, detecting estrus and grasping the health condition and stress of cows are very important

Typical methods

 Collect and analyze information of individual livestock (e.g. blood test, pedometer, implanted thermometer, etc.)

Problems

- Difficulties in detecting weak or non-visible changes of health/stress condition and estrus
- Stress induced by measurement itself
- Cost of measurement/test (labor costs)

Our solution: loC (Internet of Cows)

Our project

- Cows are **social animals** which build community
- From "grasping individual cow's condition" to "grasping cow's condition through interaction affected by their instincts"

Extraction of diverse multi-layer interaction **Community Extraction** Interaction Physical Contact Types ynamic Approach Time length, direction Synchronous Behavior Chang Time length, direction Interaction etc. Graph Analysis of the changes of cow's interaction, community and condition Innovation in cow breeding industry

- Automatic health & estrus detection Pre-empt care for **signs of** illness/stress
- Weak/non-visible estrus detection

Experimental Field

Food Resources Education and Research Center, Kobe Univ. (Kasai City (40km from Kobe))

20 Antennas

Approx. 40 Japanese Black Breeding Cows

Current achievements in the project

(fat field) Prof. Ohta

- Track Cows using BLE tag and bird's eye image
 - Environment Preparation

β

NOUN

- Location estimation of cows using active BLE tags
- Tracking cows using bird's eye image

(big mountain) Prof. Oyama

- Obtain various data to grasp the condition of cows
 - Estrus detection by visual observation (standing, unusual approach, mucus, vulva swelling, bleeding)
 - Find abnormal cows by saliva and blood test

(big river) Prof. Ohkawa

- Extract interaction and discover its significant change
 - Behavioral analysis from BLE tag data
 - Interaction based on synchronization and approaching
 - Relation with condition and change of interaction

Important points for verification

- Is it possible to grasp cow location with BLE tags?
- Is there a relation with cow's interaction and condition?

Current achievements in the project

Interaction based on cow's synchronized behavior

Example of interaction graph

Extract communities from the interaction graph using Louvain method in which the modularity is locally optimized

Preliminary Result (1) Interaction based on synchronized behavior and estrus

Temporal change of the size of the community

Preliminary Result (2) Interaction based on synchronized behavior and estrus

Temporal change of the similarity of the community*

*Similarity between the current community and the community the cow normally belongs to

No special

Cow ID:20283 (Nov. 1, 2017 – Nov. 31, 2017)

Stanchion order vs. community size

Stanchion order:

- the order of returning to the cowshed for getting food
- the strongest cow usually returns first, the weakest one returns last
- change of the order suggests estrus

Cow ID	20197	20192	20171	20113	20115	20110	20122	20126	20170	20267	20268
Rank	1	1	3	4	5	7	7	7	14	16	22
Strong									> Weak		

The rank of community size:

• the higher the rank is, the smaller the average size of community that the cow belongs to is

Cow ID	20197	20192	20171	20113	20115	20110	20122	20126	20170	20267	20268
Rank	1	3	6	5	6	3	9	9	17	20	23

Strong cows behave independently

✓ Weak cows hang around with other weak cows

Extract interaction from approach behavior

Amount of Approach Calculation

Consider only approaching to the same community cows

Ignore approaching to the different community cows

Preliminary Result (3)

Interaction from approach behavior and Estrus

Preliminary Result (4)

Interaction from approach behavior and Estrus

Cow ID:20220 (Nov. 19, 2017 09:00 - Nov. 24, 2017 09:00)

Preliminary Result (5)

Interaction from approach behavior and Estrus

Cow ID:20115 (Nov. 6, 2017 11:00 - Nov. 11, 2017 08:00)

Future Plans

Track cows using BLE tags and bird's eye image

- Improve the accuracy by increasing resolution of virtual space
- Verification using BLE tags equipped on cows
- Use complementarily with bird's eye image
- **Obtain various data to grasp the condition of cows**
 - Acquire data continuously

Relevance evaluation of cow's condition & interaction

- Refinement of interactions
- Automatic classification of behaviors
- Find abnormal cow by analyzing the community change
- Accuracy evaluation by increasing the number of data
- Interpretation from the viewpoint of ethology

Thank you for your kind attention!

